CHEM 122 Problem Set 3

- 1. Acetylene, used as a fuel in welding torches, contains 92.3% carbon and 7.7% hydrogen and has a molecular mass of 26 amu. Calculate its empirical and molecular formulas.
- 2. Benzene has the same composition of carbon and hydrogen as acetylene. Its molecular mass, though, is 78 amu. What is its molecular formula?
- 3. Ascorbic acid, vitamin C, has the percentage composition 41.4% C, 3.45% H and 55.2% O and a molecular mass of 174 amu. What is its molecular formula?
- 4. What is the molecular formula of urea if its composition is 20% C, 6.67% H, 46.7% N and 26.7% O and has a molecular mass of 60 amu?
- 5. Novocaine, a local anesthetic, is composed of 66.1% C, 8.47% H, 11.9% N and 13.6% O and has a molecular mass of 236 amu. What is its molecular formula?
- 6. For the following, determine 1) the compound name, 2) the compound's molecular mass and 3) the percent water in the compound.

a. $CaSO_4$ ·2H ₂ O	b. Na ₂ CO ₃ •10H ₂ O
c. $MgSO_4 \cdot 7H_2O$	d. $BaCl_2 \cdot 2H_2O$
e. $CuCl_2 \cdot 2H_2O$	f. $MnSO_4$ ·3H ₂ O
g. $FeSO_4 \cdot 5H_2O$	h. $LiNO_3 \cdot 3H_2O$
i. $KAl(SO_4)_2 \cdot 12H_2O$	j. CuSO ₄ •5H ₂ O

7. Write the dissociation expressions and equilibrium expressions for the dissociation of the following acids (include each individual dissociation and the overall dissociation constants):

a. HCl	b. HNO ₃	c. HI
d. H ₂ SO ₄	e. H_2SO_3	f. H ₂ S
g. H ₃ PO ₄	h. H ₃ PO ₃	i. H ₃ AsO ₄

8. Using the table, right, of electronegativity (EN) values, determine the kind of bond between the following substances – remember if the Δ EN value equals 0, then you have a polar non-covalent bond; if the Δ EN value is greater than zero and

		H					
L		2.1					
Li	Be		В	С	N	0	F
1	1.5		2	2.5	3	3.5	4
Na	Mg		Al	Si	Р	S	Cl
0.9	1.2		1.5	1.8	2.1	2.5	3.0
K	Ca		Ga	Ge	As	Se	Br
0.9	1.0		1.6	1.8	2.0	2.4	2.8
Rb	Sr		In	Sn	Sb	Te	I
0.8	1.0		1.7	1.8	1.9	2.1	2.5
Cs	Ba						
0.7	0.9						

less than or equal to 2.0, then you have a polar covalent bond; if the Δ EN value is greater than 2.0, then you have an ionic bond.

a. NaCl	b. HI	c. H ₂ O	d. ICl
e. BF ₃	f. KF	g. CsBr	h. NH ₃
i. CH4	j. BaBr ₂	k. KI	l. NaBr

- 9. What are the five forms of hydrates?
- 10. A strong acid yields a _____ conjugate base; a weak acid yields a _____ conjugate base; a strong base yields a _____ conjugate acid; a weak base yields a _____ conjugate acid.